National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Experimental Assessment of Influence of Polyethylene Liners' Position on Plastic Deformation in the Run-in Phase of Wear
Zeman, Jakub ; Daniel, Matej (referee) ; Ranuša, Matúš (advisor)
The diploma thesis is focused on the run-in phase of total hip replacement. Mutual adjustment of contact surfaces takes place in this phase and polyethylene acetabular cup shows notable creep behaviour. The magnitude of creep deformations is assessed experimentally in relation to acetabular cups orientation in human body after its implantation. The condition of articulating surfaces is also assessed as well as resulting coefficient of friction in run-in phase. Physiological load and kinematics of the artificial joint as well as physiological conditioning is achieved by new module of existing joint simulator, which is created as part of this thesis. Deformations and condition of articulating surfaces are assessed via optical methods and SEM. Findings about the run-in phase are compared with existing FEM analyses to evaluate simplifications used in these analyses. Measurement of creep deformations has also potential to improve the accuracy of acetabular wear diagnosis in clinical practice.
Experimental Assessment of Influence of Polyethylene Liners' Position on Plastic Deformation in the Run-in Phase of Wear
Zeman, Jakub ; Daniel, Matej (referee) ; Ranuša, Matúš (advisor)
The diploma thesis is focused on the run-in phase of total hip replacement. Mutual adjustment of contact surfaces takes place in this phase and polyethylene acetabular cup shows notable creep behaviour. The magnitude of creep deformations is assessed experimentally in relation to acetabular cups orientation in human body after its implantation. The condition of articulating surfaces is also assessed as well as resulting coefficient of friction in run-in phase. Physiological load and kinematics of the artificial joint as well as physiological conditioning is achieved by new module of existing joint simulator, which is created as part of this thesis. Deformations and condition of articulating surfaces are assessed via optical methods and SEM. Findings about the run-in phase are compared with existing FEM analyses to evaluate simplifications used in these analyses. Measurement of creep deformations has also potential to improve the accuracy of acetabular wear diagnosis in clinical practice.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.